Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase.
نویسندگان
چکیده
OBJECTIVE Plasma levels of an endogenous nitric oxide (NO) synthase inhibitor, asymmetric dimethylarginine (ADMA), are elevated in chronic renal failure, hypertension, and chronic heart failure. In patients with renal failure, plasma ADMA levels are an independent correlate of left ventricular ejection fraction. However, the cardiovascular effects of a systemic increase in ADMA in humans are not known. METHODS AND RESULTS In a randomized, double-blind, placebo-controlled study in 12 healthy male volunteers, we compared the effects of intravenous low-dose ADMA and placebo on heart rate, blood pressure, cardiac output, and systemic vascular resistance at rest and during exercise. We also tested the hypothesis that ADMA is metabolized in humans in vivo by dimethylarginine dimethylaminohydrolase (DDAH) enzymes. Low-dose ADMA reduced heart rate by 9.2+/-1.4% from 58.9+/-2.0 bpm (P<0.001) and cardiac output by 14.8+/-1.2% from 4.4+/-0.3 L/min (P<0.001). ADMA also increased mean blood pressure by 6.0+/-1.2% from 88.6+/-3.4 mm Hg (P<0.005) and SVR by 23.7+/-2.1% from 1639.0+/-91.6 dyne. s. cm-5 (P<0.001). Handgrip exercise increased cardiac output in control subjects by 96.8+/-23.3%, but in subjects given ADMA, cardiac output increased by only 35.3+/-10.6% (P<0.05). DDAHs metabolize ADMA to citrulline and dimethylamine. Urinary dimethylamine to creatinine ratios significantly increased from 1.26+/-0.32 to 2.73+/-0.59 after ADMA injection (P<0.01). We estimate that humans generate approximately 300 micromol of ADMA per day, of which approximately 250 micromol is metabolized by DDAHs. CONCLUSIONS This study defines the cardiovascular effects of a systemic increase in ADMA in humans. These are similar to changes seen in diseases associated with ADMA accumulation. Finally, our data also indicate that ADMA is metabolized by DDAHs extensively in humans in vivo.
منابع مشابه
Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کاملThe emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor.
There is abundant evidence that the endothelium plays a crucial role in the maintenance of vascular tone and structure. One of the major endothelium-derived vasoactive mediators is nitric oxide (NO). Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase. ADMA inhibits vascular NO production at concentrations found in pathophysiological conditions (i.e., 3-15 micromol/l); ...
متن کاملDimethylarginine dimethylaminohydrolase and endothelial dysfunction in failing hearts.
Congestive heart failure (CHF) is associated with impaired endothelium-dependent nitric oxide (NO)-mediated vasodilation (endothelial dysfunction). We hypothesized that coronary endothelial dysfunction in CHF may be due in part to decreased dimethylarginine dimethylaminohydrolase (DDAH), the enzyme that degrades endogenous inhibitors of NO synthase (NOS), including asymmetric dimethylarginine. ...
متن کاملIncreased levels and reduced catabolism of asymmetric and symmetric dimethylarginines in pulmonary hypertension.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase (NOS) and has been implicated in endothelial dysfunction. ADMA is metabolized by the enzyme dimethylarginine dimethylaminohydrolase (DDAH), with DDAH2 representing the predominant endothelial DDAH isoform. Symmetric dimethylarginine (SDMA), also originating from arginine methylation by protein arginine methyl...
متن کاملEffect Of Dimethylarginine Dimethylaminohydrolase In The Development Of Salt Sensitivity
EFFECT OF DIMETHYLARGININE DIMETHYLAMINOHYDROLASE IN TEDEVELOPMENT OF SALT SENSITIVITYbySAMAR ABDULLA NASSERMay 2011Advisor: Dr. John FlackMajor: PhysiologyDegree: Doctor of PhilosophySalt sensitivity is associated with a rise in blood pressure (BP) occurring duringsodium loading and/or a fall in BP during sodium restriction that exceeds randomfluctua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 23 8 شماره
صفحات -
تاریخ انتشار 2003